Search results
Results From The WOW.Com Content Network
Simply put, the polar moment of area is a shaft or beam's resistance to being distorted by torsion, as a function of its shape. The rigidity comes from the object's cross-sectional area only, and does not depend on its material composition or shear modulus. The greater the magnitude of the second polar moment of area, the greater the torsional ...
The second moment of area, also known as area moment of inertia, is a geometrical property of an area which reflects how its points are distributed with respect to an arbitrary axis. The unit of dimension of the second moment of area is length to fourth power, L 4, and should not be confused with the mass moment of inertia.
In this case, the moment of inertia of the mass in this system is a scalar known as the polar moment of inertia. The definition of the polar moment of inertia can be obtained by considering momentum, kinetic energy and Newton's laws for the planar movement of a rigid system of particles. [15] [18] [25] [26]
Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].
In solid mechanics and structural engineering, section modulus is a geometric property of a given cross-section used in the design of beams or flexural members.Other geometric properties used in design include: area for tension and shear, radius of gyration for compression, and second moment of area and polar second moment of area for stiffness.
In 1820, the French engineer A. Duleau derived analytically that the torsion constant of a beam is identical to the second moment of area normal to the section J zz, which has an exact analytic equation, by assuming that a plane section before twisting remains planar after twisting, and a diameter remains a straight line. Unfortunately, that ...
The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.
Flexural rigidity of a plate has units of Pa·m 3, i.e. one dimension of length less than the same property for the rod, as it refers to the moment per unit length per unit of curvature, and not the total moment. I is termed as moment of inertia. J is denoted as 2nd moment of inertia/polar moment of inertia.