Search results
Results From The WOW.Com Content Network
In computational geometry, the smallest enclosing box problem is that of finding the oriented minimum bounding box enclosing a set of points. It is a type of bounding volume. "Smallest" may refer to volume, area, perimeter, etc. of the box. It is sufficient to find the smallest enclosing box for the convex hull of the objects in question. It is ...
A sphere enclosed by its axis-aligned minimum bounding box (in 3 dimensions) In geometry, the minimum bounding box or smallest bounding box (also known as the minimum enclosing box or smallest enclosing box) for a point set S in N dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie.
The cube operation can also be defined for any other mathematical expression, for example (x + 1) 3. The cube is also the number multiplied by its square: n 3 = n × n 2 = n × n × n. The cube function is the function x ↦ x 3 (often denoted y = x 3) that maps a number to its cube. It is an odd function, as (−n) 3 = −(n 3).
An important special case is when the index set is , the natural numbers: this Cartesian product is the set of all infinite sequences with the i-th term in its corresponding set X i. For example, each element of ∏ n = 1 ∞ R = R × R × ⋯ {\displaystyle \prod _{n=1}^{\infty }\mathbb {R} =\mathbb {R} \times \mathbb {R} \times \cdots } can ...
For example, to calculate for one of the points, find (,) for the points to the left and right of the target point and calculate their slope, and similarly for . To find the cross derivative f x y {\displaystyle f_{xy}} , take the derivative in both axes, one at a time.
This will be the current value c. Find p, y and x, as follows: Let p be the part of the root found so far, ignoring any decimal point. (For the first step, p = 0.) Determine the greatest digit x such that (+). We will use a new variable y = x(20p + x). Note: 20p + x is simply twice p, with the digit x appended to the right.
The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.
Semi-log plot of solutions of + + = for integer , , and , and .Green bands denote values of proven not to have a solution.. In the mathematics of sums of powers, it is an open problem to characterize the numbers that can be expressed as a sum of three cubes of integers, allowing both positive and negative cubes in the sum.