When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Absolutely and completely monotonic functions and sequences

    en.wikipedia.org/wiki/Absolutely_and_completely...

    A function that is absolutely monotonic on [,) can be extended to a function that is not only analytic on the real line but is even the restriction of an entire function to the real line. The big Bernshtein theorem : A function f ( x ) {\displaystyle f(x)} that is absolutely monotonic on ( − ∞ , 0 ] {\displaystyle (-\infty ,0]} can be ...

  3. Monotonic function - Wikipedia

    en.wikipedia.org/wiki/Monotonic_function

    A function that is not monotonic. In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. [1] [2] [3] This concept first arose in calculus, and was later generalized to the more abstract setting of order theory.

  4. Contraction mapping - Wikipedia

    en.wikipedia.org/wiki/Contraction_mapping

    A contraction mapping has at most one fixed point. Moreover, the Banach fixed-point theorem states that every contraction mapping on a non-empty complete metric space has a unique fixed point, and that for any x in M the iterated function sequence x, f (x), f (f (x)), f (f (f (x))), ... converges to the fixed point

  5. Galois connection - Wikipedia

    en.wikipedia.org/wiki/Galois_connection

    A monotone Galois connection between these posets consists of two monotone [1] functions: F : A → B and G : B → A, such that for all a in A and b in B, we have F(a) ≤ b if and only if a ≤ G(b). In this situation, F is called the lower adjoint of G and G is called the upper adjoint of F.

  6. Order embedding - Wikipedia

    en.wikipedia.org/wiki/Order_embedding

    In order theory, a branch of mathematics, an order embedding is a special kind of monotone function, which provides a way to include one partially ordered set into another. Like Galois connections, order embeddings constitute a notion which is strictly weaker than the concept of an order isomorphism.

  7. Milnor–Thurston kneading theory - Wikipedia

    en.wikipedia.org/wiki/Milnor–Thurston_kneading...

    Kneading theory provides an effective calculus for describing the qualitative behavior of the iterates of a piecewise monotone mapping f of a closed interval I of the real line into itself. Some quantitative invariants of this discrete dynamical system , such as the lap numbers of the iterates and the Artin–Mazur zeta function of f are ...

  8. Map (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Map_(mathematics)

    A map is a function, as in the association of any of the four colored shapes in X to its color in Y. In mathematics, a map or mapping is a function in its general sense. [1] These terms may have originated as from the process of making a geographical map: mapping the Earth surface to a sheet of paper. [2]

  9. Open and closed maps - Wikipedia

    en.wikipedia.org/wiki/Open_and_closed_maps

    In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. [1] [2] [3] That is, a function : is open if for any open set in , the image is open in . Likewise, a closed map is a function that maps closed sets to closed sets.