Search results
Results From The WOW.Com Content Network
In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (C P) to heat capacity at constant volume (C V).
The laws of thermodynamics imply the following relations between these two heat capacities (Gaskell 2003:23): = = Here is the thermal expansion coefficient: = is the isothermal compressibility (the inverse of the bulk modulus):
Low temperature approximations for both gases and solids at temperatures less than their characteristic Einstein temperatures or Debye temperatures can be made by the methods of Einstein and Debye discussed below. Water (liquid): CP = 4185.5 J⋅K −1 ⋅kg −1 (15 °C, 101.325 kPa) Water (liquid): CVH = 74.539 J⋅K −1 ⋅mol −1 (25 °C)
The variation can be ignored in contexts when working with objects in narrow ranges of temperature and pressure. For example, the heat capacity of a block of iron weighing one pound is about 204 J/K when measured from a starting temperature T = 25 °C and P = 1 atm of pressure. That approximate value is adequate for temperatures between 15 °C ...
As seen in the heat equation, [5] =, one way to view thermal diffusivity is as the ratio of the time derivative of temperature to its curvature, quantifying the rate at which temperature concavity is "smoothed out".
A Assuming an altitude of 194 metres above mean sea level (the worldwide median altitude of human habitation), an indoor temperature of 23 °C, a dewpoint of 9 °C (40.85% relative humidity), and 760 mmHg sea level–corrected barometric pressure (molar water vapor content = 1.16%). B Calculated values *Derived data by calculation.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
This relationship is valid for the flow of incompressible fluids where variations in speed and pressure are sufficiently small that variations in fluid density can be neglected. This assumption is commonly made in engineering practice when the Mach number is less than about 0.3.