Search results
Results From The WOW.Com Content Network
The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable load in a mechanical component, since it represents the upper limit to forces that can be applied without producing ...
It is proposed that yield occurs when the distortion component exceeds that at the yield point for a simple tensile test. This theory is also known as the von Mises yield criterion. The yield surfaces corresponding to these criteria have a range of forms. However, most isotropic yield criteria correspond to convex yield surfaces.
The linear-elastic region is either below the yield point, or if a yield point is not easily identified on the stress–strain plot it is defined to be between 0 and 0.2% strain, and is defined as the region of strain in which no yielding (permanent deformation) occurs. [11]
As shown later in this article, at the onset of yielding, the magnitude of the shear yield stress in pure shear is √3 times lower than the tensile yield stress in the case of simple tension. Thus, we have: = where is tensile yield strength of the material. If we set the von Mises stress equal to the yield strength and combine the above ...
The relationship between stress and strain is generally linear and reversible up until the yield point and the deformation is elastic. Elasticity in materials occurs when applied stress does not surpass the energy required to break molecular bonds, allowing the material to deform reversibly and return to its original shape once the stress is ...
A yield surface is a five-dimensional surface in the six-dimensional space of stresses. The yield surface is usually convex and the state of stress of inside the yield surface is elastic. When the stress state lies on the surface the material is said to have reached its yield point and the material is said to have become plastic. Further ...
Figure 1: View of Drucker–Prager yield surface in 3D space of principal stresses for =, = The Drucker–Prager yield criterion [1] is a pressure-dependent model for determining whether a material has failed or undergone plastic yielding. The criterion was introduced to deal with the plastic deformation of soils.
A solid is a material that can support a substantial amount of shearing force over a given time scale during a natural or industrial process or action. This is what distinguishes solids from fluids, because fluids also support normal forces which are those forces that are directed perpendicular to the material plane across from which they act and normal stress is the normal force per unit area ...