When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Parallelogram of force - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_of_force

    When more than two forces are involved, the geometry is no longer a parallelogram, but the same principles apply to a polygon of forces. The resultant force due to the application of a number of forces can be found geometrically by drawing arrows for each force. The parallelogram of forces is a graphical manifestation of the addition of vectors.

  3. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    The space of solutions is the affine subspace x + V where x is a particular solution of the equation, and V is the space of solutions of the homogeneous equation (the nullspace of A). The set of one-dimensional subspaces of a fixed finite-dimensional vector space V is known as projective space ; it may be used to formalize the idea of parallel ...

  4. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .

  5. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    When two forces act on a point particle, the resulting force, the resultant (also called the net force), can be determined by following the parallelogram rule of vector addition: the addition of two vectors represented by sides of a parallelogram, gives an equivalent resultant vector that is equal in magnitude and direction to the transversal ...

  6. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  7. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    The area of the parallelogram is the absolute value of the determinant of the matrix formed by the vectors representing the parallelogram's sides. If the matrix entries are real numbers, the matrix A represents the linear map that maps the basis vectors to the columns of A .

  8. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    It is common to call these tuples vectors, even in contexts where vector-space operations do not apply. More generally, when some data can be represented naturally by vectors, they are often called vectors even when addition and scalar multiplication of vectors are not valid operations on these data. [disputed – discuss] Here are some examples.

  9. Bivector - Wikipedia

    en.wikipedia.org/wiki/Bivector

    If imagined as a parallelogram, with the origin for the vectors at 0, then signed area is the determinant of the vectors' Cartesian coordinates (a x b y − b x a y). [ 21 ] The cross product a × b is orthogonal to the bivector a ∧ b .