Ad
related to: c kittel solid state physics book pdf download free
Search results
Results From The WOW.Com Content Network
Introduction to Solid State Physics, known colloquially as Kittel, is a classic condensed matter physics textbook written by American physicist Charles Kittel in 1953. [1] The book has been highly influential and has seen widespread adoption; Marvin L. Cohen remarked in 2019 that Kittel's content choices in the original edition played a large ...
Charles Kittel (July 18, 1916 – May 15, 2019) was an American physicist. He was a professor at the University of California, Berkeley from 1951 and was professor emeritus from 1978 until his death.
In a 2003 article detailing Mermin's contributions to solid state physics, the book was said to be "an extraordinarily readable textbook of the subject, which introduced a whole generation of solid state specialists to a subtle and elegant way of doing theoretical physics." [8] The book, along with Kittel is also used as a benchmark for other ...
This timeline includes developments in subfields of condensed matter physics such as theoretical crystallography, solid-state physics, soft matter physics, mesoscopic physics, material physics, low-temperature physics, microscopic theories of magnetism in matter and optical properties of matter and metamaterials.
Solid-state physics is the study of rigid matter, or solids, through methods such as solid-state chemistry, quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state physics studies how the large-scale properties of solid materials result from their atomic-scale ...
In solid-state physics, the nearly free electron model (or NFE model and quasi-free electron model) is a quantum mechanical model of physical properties of electrons that can move almost freely through the crystal lattice of a solid. The model is closely related to the more conceptual empty lattice approximation.
In solid-state physics, the free electron model is a quantum mechanical model for the behaviour of charge carriers in a metallic solid. It was developed in 1927, [1] principally by Arnold Sommerfeld, who combined the classical Drude model with quantum mechanical Fermi–Dirac statistics and hence it is also known as the Drude–Sommerfeld model.
Drude starts from the discovery of electrons in 1897 by J.J. Thomson and assumes as a simplistic model of solids that the bulk of the solid is composed of positively charged scattering centers, and a sea of electrons submerge those scattering centers to make the total solid neutral from a charge perspective.