Search results
Results From The WOW.Com Content Network
Radius of curvature sign convention for optical design. Radius of curvature (ROC) has specific meaning and sign convention in optical design. A spherical lens or mirror surface has a center of curvature located either along or decentered from the system local optical axis. The vertex of the lens surface is located on the local optical axis.
The sign of the weight of a tensor density, such as the weight of the determinant of the covariant metric tensor. The active and passive sign convention of current, voltage and power in electrical engineering. A sign convention used for curved mirrors assigns a positive focal length to concave mirrors and a negative focal length to convex mirrors.
Convex mirror lets motorists see around a corner. Detail of the convex mirror in the Arnolfini Portrait. The passenger-side mirror on a car is typically a convex mirror. In some countries, these are labeled with the safety warning "Objects in mirror are closer than they appear", to warn the driver of the convex mirror's distorting effects on distance perception.
The signs are reversed for the back surface of the lens: R 2 is positive if the surface is concave, and negative if it is convex. This is an arbitrary sign convention; some authors choose different signs for the radii, which changes the equation for the focal length. For a thin lens, d is much smaller than one of the radii of curvature (either ...
+ = + (+), where the signs of the radii follow the Cartesian sign convention. A point source as imaged by a system with negative (top row), zero (middle row), and positive spherical aberration (bottom row). The middle column shows the focused image, columns to the left show defocusing toward the inside, and columns to the right show defocusing ...
By convention, "f / #" is treated as a single symbol, and specific values of f / # are written by replacing the number sign with the value. The two ways to increase the f-stop are to either decrease the diameter of the entrance pupil or change to a longer focal length (in the case of a zoom lens , this can be done by simply adjusting the lens).
Similarly to curved mirrors, thin lenses follow a simple equation that determines the location of the images given a particular focal length and object distance (): + = where is the distance associated with the image and is considered by convention to be negative if on the same side of the lens as the object and positive if on the opposite side ...
The focal point F and focal length f of a positive (convex) lens, a negative (concave) lens, a concave mirror, and a convex mirror.. The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power.