Search results
Results From The WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
This depth is converted to a flow rate according to a theoretical formula of the form = where is the flow rate, is a constant, is the water level, and is an exponent which varies with the device used; or it is converted according to empirically derived level/flow data points (a "flow curve"). The flow rate can then be integrated over time into ...
eBay was founded as AuctionWeb in California on September 3, 1995, by French-born Iranian-American computer programmer Pierre Omidyar as a hobby to make some extra money. [2] One of the first items sold on AuctionWeb was a broken laser pointer for $14.83. Astonished, Omidyar contacted the winning bidder to ask if he understood that the laser ...
On the horizontal axis, the pendulum position, and on the vertical one its velocity. In mathematics, a flow formalizes the idea of the motion of particles in a fluid. Flows are ubiquitous in science, including engineering and physics. The notion of flow is basic to the study of ordinary differential equations. Informally, a flow may be viewed ...
[19] [20] Examples of quotients of dimension one include calculating slopes or some unit conversion factors. Another set of examples is mass fractions or mole fractions , often written using parts-per notation such as ppm (= 10 −6 ), ppb (= 10 −9 ), and ppt (= 10 −12 ), or perhaps confusingly as ratios of two identical units ( kg /kg or ...
In engineering and science, dimensional analysis is the analysis of the relationships between different physical quantities by identifying their base quantities (such as length, mass, time, and electric current) and units of measurement (such as metres and grams) and tracking these dimensions as calculations or comparisons are performed.
The Euler number (Eu) is a dimensionless number used in fluid flow calculations. It expresses the relationship between a local pressure drop caused by a restriction and the kinetic energy per volume of the flow, and is used to characterize energy losses in the flow, where a perfect frictionless flow corresponds to an Euler number of 0.
As we get closer to the sink, area of flow decreases. In order to satisfy the continuity equation, the streamlines get bunched closer and the velocity increases as we get closer to the source. As with source flow, the velocity at all points equidistant from the sink is equal. Fig 3 – Streamlines and potential lines for sink flow