Ad
related to: mls terms defined examples in geometry pdf bookstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In the context of proofs, this phrase is often seen in induction arguments when passing from the base case to the induction step, and similarly, in the definition of sequences whose first few terms are exhibited as examples of the formula giving every term of the sequence. necessary and sufficient
A plane conic passing through the circular points at infinity. For real projective geometry this is much the same as a circle in the usual sense, but for complex projective geometry it is different: for example, circles have underlying topological spaces given by a 2-sphere rather than a 1-sphere. circuit A component of a real algebraic curve.
In more fancy terms, affine morphisms are defined by the global Spec construction for sheaves of O X-Algebras, defined by analogy with the spectrum of a ring. Important affine morphisms are vector bundles, and finite morphisms. 5. The affine cone over a closed subvariety X of a projective space is the Spec of the homogeneous coordinate ring of X.
A generic point of the topological space X is a point P whose closure is all of X, that is, a point that is dense in X. [1]The terminology arises from the case of the Zariski topology on the set of subvarieties of an algebraic set: the algebraic set is irreducible (that is, it is not the union of two proper algebraic subsets) if and only if the topological space of the subvarieties has a ...
In the former case, equivalence of two definitions means that a mathematical object (for example, geometric body) satisfies one definition if and only if it satisfies the other definition. In the latter case, the meaning of equivalence (between two definitions of a structure) is more complicated, since a structure is more abstract than an object.
To a system of points, straight lines, and planes, it is impossible to add other elements in such a manner that the system thus generalized shall form a new geometry obeying all of the five groups of axioms. In other words, the elements of geometry form a system which is not susceptible of extension, if we regard the five groups of axioms as valid.
A linear system of divisors algebraicizes the classic geometric notion of a family of curves, as in the Apollonian circles.. In algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of curves; the dimension of the linear system corresponds to the number of parameters of the family.
Moving least squares is a method of reconstructing continuous functions from a set of unorganized point samples via the calculation of a weighted least squares measure biased towards the region around the point at which the reconstructed value is requested.