Search results
Results From The WOW.Com Content Network
The Brayton cycle, also known as the Joule cycle, is a thermodynamic cycle that describes the operation of certain heat engines that have air or some other gas as their working fluid. It is characterized by isentropic compression and expansion, and isobaric heat addition and rejection, though practical engines have adiabatic rather than ...
Thermodynamic cycles may be used to model real devices and systems, typically by making a series of assumptions to reduce the problem to a more manageable form. [2] For example, as shown in the figure, devices such a gas turbine or jet engine can be modeled as a Brayton cycle. The actual device is made up of a series of stages, each of which is ...
Closed-cycle gas turbine schematic C compressor and T turbine assembly w high-temperature heat exchanger ʍ low-temperature heat exchanger ~ mechanical load, e.g. electric generator. A closed-cycle gas turbine is a turbine that uses a gas (e.g. air, nitrogen, helium, argon, [1] [2] etc.) for the working fluid as part of a closed thermodynamic ...
Inverted Brayton Cycle (IBC) (also known as Subatmospheric Brayton cycle) is another version of the conventional Brayton cycle but with a turbine positioned immediately in the inlet of the system. [ 1 ] [ 2 ] [ 3 ]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Differs from Otto cycle in that V 1 < V 4. Brayton: adiabatic: isobaric: adiabatic: isobaric Ramjets, turbojets, -props, and -shafts. Originally developed for use in reciprocating engines. The external combustion version of this cycle is known as the first Ericsson cycle from 1833. Diesel: adiabatic: isobaric: adiabatic: isochoric Diesel engine ...
Brayton cycle: gas turbines and jet engines The Brayton cycle is the cycle used in gas turbines and jet engines. It consists of a compressor that increases pressure of the incoming air, then fuel is continuously added to the flow and burned, and the hot exhaust gasses are expanded in a turbine.
Brayton not only achieved success in making the constant pressure cycle work, but he also made and marketed a commercial product. Brayton cycle engines were some of the first engines to be used for motive power. In 1881 John Philip Holland used a Brayton engine to power the world's first successful self-propelled submarine, the Fenian Ram. [5]