When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Decimal data type - Wikipedia

    en.wikipedia.org/wiki/Decimal_data_type

    Although all decimal fractions are fractions, and thus it is possible to use a rational data type to represent it exactly, it may be more convenient in many situations to consider only non-repeating decimal fractions (fractions whose denominator is a power of ten). For example, fractional units of currency worldwide are mostly based on a ...

  3. Decimal representation - Wikipedia

    en.wikipedia.org/wiki/Decimal_representation

    Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".

  4. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.

  5. The repeating decimal commonly written as 0.999... represents exactly the same quantity as the number one. Despite having the appearance of representing a smaller number, 0.999... is a symbol for the number 1 in exactly the same way that 0.333... is an equivalent notation for the number represented by the fraction 1 ⁄ 3. [437]

  6. Numeral system - Wikipedia

    en.wikipedia.org/wiki/Numeral_system

    An irrational number stays aperiodic (with an infinite number of non-repeating digits) in all integral bases. Thus, for example in base 2, π = 3.1415926... 10 can be written as the aperiodic 11.001001000011111... 2. Putting overscores, n, or dots, ṅ, above the common digits is a convention used to represent repeating rational expansions. Thus:

  7. Numerical cognition - Wikipedia

    en.wikipedia.org/wiki/Numerical_cognition

    Numerical cognition is a subdiscipline of cognitive science that studies the cognitive, developmental and neural bases of numbers and mathematics.As with many cognitive science endeavors, this is a highly interdisciplinary topic, and includes researchers in cognitive psychology, developmental psychology, neuroscience and cognitive linguistics.

  8. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    In the case of irrational numbers, the decimal expansion does not terminate, nor end with a repeating sequence. For example, the decimal representation of π starts with 3.14159, but no finite number of digits can represent π exactly, nor does it repeat. Conversely, a decimal expansion that terminates or repeats must be a rational number.

  9. Decimal - Wikipedia

    en.wikipedia.org/wiki/Decimal

    A repeating decimal is an infinite decimal that, after some place, repeats indefinitely the same sequence of digits (e.g., 5.123144144144144... = 5.123 144). [4] An infinite decimal represents a rational number, the quotient of two integers, if and only if it is a repeating decimal or has a finite number of non-zero digits.