Search results
Results From The WOW.Com Content Network
Buoyancy (/ ˈ b ɔɪ ən s i, ˈ b uː j ən s i /), [1] [2] or upthrust is a net upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid.
An object whose weight exceeds its buoyancy tends to sink. Calculation of the upwards force on a submerged object during its accelerating period cannot be done by the Archimedes principle alone; it is necessary to consider dynamics of an object involving buoyancy. Once it fully sinks to the floor of the fluid or rises to the surface and settles ...
All objects in a fluid experience two opposed forces in the vertical direction: gravity (determined by the mass of the object) and buoyancy (determined by the density of the fluid and the volume of liquid displaced by the object). If the buoyant force is greater than the force of gravity acting on an object, it will rise to the top of the liquid.
When the buoyancy effects are taken into account, an object falling through a fluid under its own weight can reach a terminal velocity (settling velocity) if the net force acting on the object becomes zero. When the terminal velocity is reached the weight of the object is exactly balanced by the upward buoyancy force and drag force. That is
Neutral buoyancy occurs when an object's average density is equal to the density of the fluid in which it is immersed, resulting in the buoyant force balancing the force of gravity that would otherwise cause the object to sink (if the body's density is greater than the density of the fluid in which it is immersed) or rise (if it is less).
Two types of convective heat transfer may be distinguished: Free or natural convection: when fluid motion is caused by buoyancy forces that result from the density variations due to variations of thermal ±temperature in the fluid. In the absence of an internal source, when the fluid is in contact with a hot surface, its molecules separate and ...
A possible cause of this problem is that the third law is often stated in an abbreviated form: For every action there is an equal and opposite reaction, [8] without the details, namely that these forces act on two different objects. Moreover, there is a causal connection between the weight of something and the normal force: if an object had no ...
Book two extends Archimedes' study from the segment of a sphere to the case of a right paraboloid and contains many sophisticated results. Although the work is extant in Latin translation, the only known copy of On Floating Bodies I-II in Greek comes from the Archimedes Palimpsest. [3]