When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sentence (mathematical logic) - Wikipedia

    en.wikipedia.org/wiki/Sentence_(mathematical_logic)

    Sentences are then built up out of atomic sentences by applying connectives and quantifiers. A set of sentences is called a theory; thus, individual sentences may be called theorems. To properly evaluate the truth (or falsehood) of a sentence, one must make reference to an interpretation of the theory.

  3. List of mathematical examples - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_examples

    This page will attempt to list examples in mathematics. To qualify for inclusion, an article should be about a mathematical object with a fair amount of concreteness. Usually a definition of an abstract concept, a theorem, or a proof would not be an "example" as the term should be understood here (an elegant proof of an isolated but particularly striking fact, as opposed to a proof of a ...

  4. Glossary of mathematical jargon - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    Rigor is a cornerstone quality of mathematics, and can play an important role in preventing mathematics from degenerating into fallacies. well-behaved An object is well-behaved (in contrast with being Pathological ) if it satisfies certain prevailing regularity properties, or if it conforms to mathematical intuition (even though intuition can ...

  5. If and only if - Wikipedia

    en.wikipedia.org/wiki/If_and_only_if

    Wherever logic is applied, especially in mathematical discussions, it has the same meaning as above: it is an abbreviation for if and only if, indicating that one statement is both necessary and sufficient for the other. This is an example of mathematical jargon (although, as noted above, if is more often used than iff in statements of definition).

  6. Language of mathematics - Wikipedia

    en.wikipedia.org/wiki/Language_of_mathematics

    The consequence of these features is that a mathematical text is generally not understandable without some prerequisite knowledge. For example, the sentence "a free module is a module that has a basis" is perfectly correct, although it appears only as a grammatically correct nonsense, when one does not know the definitions of basis, module, and free module.

  7. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    For example: "All humans are mortal, and Socrates is a human. ∴ Socrates is mortal." ∵ Abbreviation of "because" or "since". Placed between two assertions, it means that the first one is implied by the second one. For example: "11 is prime ∵ it has no positive integer factors other than itself and one." ∋ 1. Abbreviation of "such that".

  8. Propositional function - Wikipedia

    en.wikipedia.org/wiki/Propositional_function

    In propositional calculus, a propositional function or a predicate is a sentence expressed in a way that would assume the value of true or false, except that within the sentence there is a variable (x) that is not defined or specified (thus being a free variable), which leaves the statement undetermined.

  9. Number sentence - Wikipedia

    en.wikipedia.org/wiki/Number_sentence

    A valid number sentence that is true: 83 + 19 = 102. A valid number sentence that is false: 1 + 1 = 3. A valid number sentence using a 'less than' symbol: 3 + 6 < 10. A valid number sentence using a 'more than' symbol: 3 + 9 > 11. An example from a lesson plan: [6] Some students will use a direct computational approach.