Search results
Results From The WOW.Com Content Network
The sign test is a statistical test for consistent differences between pairs of observations, such as the weight of subjects before and after treatment. Given pairs of observations (such as weight pre- and post-treatment) for each subject, the sign test determines if one member of the pair (such as pre-treatment) tends to be greater than (or less than) the other member of the pair (such as ...
After that, mathematicians simplified Bouguer's symbol to "less than (greater than) or equal to with one horizontal bar" (≤), or "less than (greater than) or slanted equal to" (⩽). The relation not greater than can also be represented by , the symbol for "greater than" bisected by a slash, "not". The same is true for not less than, . The ...
The greater-than sign is a mathematical symbol that denotes an inequality between two values. The widely adopted form of two equal-length strokes connecting in an acute angle at the right, > , has been found in documents dated as far back as 1631. [ 1 ]
In graph theory, the Weisfeiler Leman graph isomorphism test is a heuristic test for the existence of an isomorphism between two graphs G and H. [1] It is a generalization of the color refinement algorithm and has been first described by Weisfeiler and Leman in 1968. [ 2 ]
For most symbols, the entry name is the corresponding Unicode symbol. So, for searching the entry of a symbol, it suffices to type or copy the Unicode symbol into the search textbox. Similarly, when possible, the entry name of a symbol is also an anchor, which allows linking easily from another Wikipedia article. When an entry name contains ...
The graph shown here appears as a subgraph of an undirected graph if and only if models the sentence ,,,.. In the first-order logic of graphs, a graph property is expressed as a quantified logical sentence whose variables represent graph vertices , with predicates for equality and adjacency testing.
Two-dimensional linear inequalities are expressions in two variables of the form: + < +, where the inequalities may either be strict or not. The solution set of such an inequality can be graphically represented by a half-plane (all the points on one "side" of a fixed line) in the Euclidean plane. [2]
In graph theory, a perfect graph is a graph in which the chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph. In all graphs, the chromatic number is greater than or equal to the size of the maximum clique, but they can be far apart.