When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  3. Decimal data type - Wikipedia

    en.wikipedia.org/wiki/Decimal_data_type

    A decimal data type could be implemented as either a floating-point number or as a fixed-point number. In the fixed-point case, the denominator would be set to a fixed power of ten. In the floating-point case, a variable exponent would represent the power of ten to which the mantissa of the number is multiplied.

  4. Computer arithmetic - Wikipedia

    en.wikipedia.org/wiki/Computer_arithmetic

    Computer arithmetic is the scientific field that deals with representation of numbers on computers and corresponding implementations of the arithmetic operations. [1] [2] It includes: Fixed-point arithmetic; Floating-point arithmetic; Interval arithmetic; Arbitrary-precision arithmetic; Modular arithmetic. Multi-modular arithmetic

  5. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    To approximate the greater range and precision of real numbers, we have to abandon signed integers and fixed-point numbers and go to a "floating-point" format. In the decimal system, we are familiar with floating-point numbers of the form (scientific notation): 1.1030402 × 10 5 = 1.1030402 × 100000 = 110304.02. or, more compactly: 1.1030402E5

  6. Binary-coded decimal - Wikipedia

    en.wikipedia.org/wiki/Binary-coded_decimal

    These languages allow the programmer to specify an implicit decimal point in front of one of the digits. For example, a packed decimal value encoded with the bytes 12 34 56 7C represents the fixed-point value +1,234.567 when the implied decimal point is located between the fourth and fifth digits: 12 34 56 7C 12 34.56 7+

  7. Real data type - Wikipedia

    en.wikipedia.org/wiki/Real_data_type

    A fixed-point data type uses the same, implied, denominator for all numbers. The denominator is usually a power of two.For example, in a hypothetical fixed-point system that uses the denominator 65,536 (2 16), the hexadecimal number 0x12345678 (0x1234.5678 with sixteen fractional bits to the right of the assumed radix point) means 0x12345678/65536 or 305419896/65536, 4660 + the fractional ...

  8. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    For floating-point arithmetic, the mantissa was restricted to a hundred digits or fewer, and the exponent was restricted to two digits only. The largest memory supplied offered 60 000 digits, however Fortran compilers for the 1620 settled on fixed sizes such as 10, though it could be specified on a control card if the default was not satisfactory.

  9. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    Compared with the fixed-point number system, the floating-point number system is more efficient in representing real numbers so it is widely used in modern computers. While the real numbers R {\displaystyle \mathbb {R} } are infinite and continuous, a floating-point number system F {\displaystyle F} is finite and discrete.