Search results
Results From The WOW.Com Content Network
By replenishing lost electrons with electrons from the splitting of water, photosystem II provides the electrons for all of photosynthesis to occur. The hydrogen ions (protons) generated by the oxidation of water help to create a proton gradient that is used by ATP synthase to generate ATP .
The free energy created is then used, via a chain of nearby electron acceptors, for a transfer of hydrogen atoms (as protons and electrons) from H 2 O or hydrogen sulfide towards carbon dioxide, eventually producing glucose. These electron transfer steps ultimately result in the conversion of the energy of photons to chemical energy.
In the reaction center of PSII of plants and cyanobacteria, the light energy is used to split water into oxygen, protons, and electrons. The protons will be used in proton pumping to fuel the ATP synthase at the end of an electron transport chain. A majority of the reactions occur at the D1 and D2 subunits of PSII.
The biochemical capacity to use water as the source for electrons in photosynthesis evolved once, in a common ancestor of extant cyanobacteria (formerly called blue-green algae). The geological record indicates that this transforming event took place early in Earth's history, at least 2450–2320 million years ago (Ma), and, it is speculated ...
In bacteria, the special pair is called P760, P840, P870, or P960. "P" here means pigment, and the number following it is the wavelength of light absorbed. Electrons in pigment molecules can exist at specific energy levels. Under normal circumstances, they are at the lowest possible energy level, the ground state.
In photophosphorylation, light energy is used to pump protons across a biological membrane, mediated by flow of electrons through an electron transport chain. This stores energy in a proton gradient. As the protons flow back through an enzyme called ATP synthase, ATP is generated from ADP and inorganic
A chemical element, often simply called an element, is a type of atom which has a specific number of protons in its atomic nucleus (i.e., a specific atomic number, or Z). [ 1 ] The definitive visualisation of all 118 elements is the periodic table of the elements , whose history along the principles of the periodic law was one of the founding ...
Photosystem I [1] is an integral membrane protein complex that uses light energy to catalyze the transfer of electrons across the thylakoid membrane from plastocyanin to ferredoxin. Ultimately, the electrons that are transferred by Photosystem I are used to produce the moderate-energy hydrogen carrier NADPH. [2]