Ads
related to: orbital period physics
Search results
Results From The WOW.Com Content Network
The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy , it usually applies to planets or asteroids orbiting the Sun , moons orbiting planets, exoplanets orbiting other stars , or binary stars .
The period of the resultant orbit will be less than that of the original circular orbit. Thrust applied in the direction of the satellite's motion creates an elliptical orbit with its highest point 180 degrees away from the firing point. The period of the resultant orbit will be longer than that of the original circular orbit.
The same (blue) area is swept out in a fixed time period. The green arrow is velocity. The purple arrow directed towards the Sun is the acceleration. The other two purple arrows are acceleration components parallel and perpendicular to the velocity. The orbital radius and angular velocity of the planet in the elliptical orbit will vary.
An orbit will be Sun-synchronous when the precession rate ρ = dΩ / dt equals the mean motion of the Earth about the Sun n E, which is 360° per sidereal year (1.990 968 71 × 10 −7 rad/s), so we must set n E = ΔΩ E / T E = ρ = ΔΩ / T , where T E is the Earth orbital period, while T is the period of the spacecraft ...
The Applegate mechanism (Applegate's mechanism or Applegate effect) explains long term orbital period variations seen in certain eclipsing binaries.As a main sequence star goes through an activity cycle, the outer layers of the star are subject to a magnetic torque changing the distribution of angular momentum, resulting in a change in the star's oblateness.
The orbital period is equal to that for a circular orbit with the orbital radius equal to the semi ... Journal of Mathematical Physics. 50 (2): 022901. arXiv: 0802. ...
In astrodynamics, the orbital eccentricity of an astronomical object is a dimensionless parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit , values between 0 and 1 form an elliptic orbit , 1 is a parabolic escape orbit (or capture orbit), and greater than ...
A circular orbit is depicted in the top-left quadrant of this diagram, where the gravitational potential well of the central mass shows potential energy, and the kinetic energy of the orbital speed is shown in red. The height of the kinetic energy remains constant throughout the constant speed circular orbit.