Ads
related to: how to run an unpaired t-test in excel
Search results
Results From The WOW.Com Content Network
From the t-test, the difference between the group means is 6-2=4. From the regression, the slope is also 4 indicating that a 1-unit change in drug dose (from 0 to 1) gives a 4-unit change in mean word recall (from 2 to 6). The t-test p-value for the difference in means, and the regression p-value for the slope, are both 0.00805. The methods ...
In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the (null) hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch , and is an adaptation of Student's t -test , [ 1 ] and is more reliable when the two samples have unequal variances and ...
Test name Scaling Assumptions Data Samples Exact Special case of Application conditions One sample t-test: interval: normal: univariate: 1: No [8]: Location test: Unpaired t-test: interval
To design a test, Šidák correction may be applied, as in the case of finitely many t-test. However, when N ( n ) → ∞ as n → ∞ {\displaystyle N(n)\rightarrow \infty {\text{ as }}n\rightarrow \infty } , the Šidák correction for t-test may not achieve the level we want, that is, the true level of the test may not converges to the ...
A paired difference test, better known as a paired comparison, is a type of location test that is used when comparing two sets of paired measurements to assess whether their population means differ. A paired difference test is designed for situations where there is dependence between pairs of measurements (in which case a test designed for ...
The noncentral t-distribution generalizes Student's t-distribution using a noncentrality parameter.Whereas the central probability distribution describes how a test statistic t is distributed when the difference tested is null, the noncentral distribution describes how t is distributed when the null is false.
In statistics, Yates's correction for continuity (or Yates's chi-squared test) is used in certain situations when testing for independence in a contingency table.
The Šidák correction is derived by assuming that the individual tests are independent.Let the significance threshold for each test be ; then the probability that at least one of the tests is significant under this threshold is (1 - the probability that none of them are significant).