Search results
Results From The WOW.Com Content Network
Thurston's 24 questions [4] [5] 24 – William Thurston: 1982 Smale's problems: 18: 14: Stephen Smale: 1998 Millennium Prize Problems: 7: 6 [6] Clay Mathematics Institute: 2000 Simon problems: 15 < 12 [7] [8] Barry Simon: 2000 Unsolved Problems on Mathematics for the 21st Century [9] 22 – Jair Minoro Abe, Shotaro Tanaka: 2001 DARPA's math ...
Problems 1, 2, 5, 6, [a] 9, 11, 12, 15, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether they resolve the problems. That leaves 8 (the Riemann hypothesis), 13 and 16 [b] unresolved. Problems 4 and 23 are considered as too vague to ever be described as solved; the withdrawn 24 would also be in ...
The Clay Mathematics Institute officially designated the title Millennium Problem for the seven unsolved mathematical problems, the Birch and Swinnerton-Dyer conjecture, Hodge conjecture, Navier–Stokes existence and smoothness, P versus NP problem, Riemann hypothesis, Yang–Mills existence and mass gap, and the Poincaré conjecture at the ...
The problem of determining whether a quantum mechanical system has a spectral gap. [9] [10] Finding the capacity of an information-stable finite state machine channel. [11] In network coding, determining whether a network is solvable. [12] [13] Determining whether a player has a winning strategy in a game of Magic: The Gathering. [14]
Smale's problems is a list of eighteen unsolved problems in mathematics proposed by Steve Smale in 1998 [1] and republished in 1999. [2] Smale composed this list in reply to a request from Vladimir Arnold, then vice-president of the International Mathematical Union, who asked several mathematicians to propose a list of problems for the 21st century.
Hilbert's 16th problem was posed by David Hilbert at the Paris conference of the International Congress of Mathematicians in 1900, as part of his list of 23 problems in mathematics. [1] The original problem was posed as the Problem of the topology of algebraic curves and surfaces (Problem der Topologie algebraischer Kurven und Flächen).
In mathematics, Hilbert's fourth problem in the 1900 list of Hilbert's problems is a foundational question in geometry.In one statement derived from the original, it was to find — up to an isomorphism — all geometries that have an axiomatic system of the classical geometry (Euclidean, hyperbolic and elliptic), with those axioms of congruence that involve the concept of the angle dropped ...
In addition to S(2,3,9), Kramer and Mesner examined other systems that could be derived from S(5,6,12) and found that there could be up to 2 disjoint S(5,6,12) systems, up to 2 disjoint S(4,5,11) systems, and up to 5 disjoint S(3,4,10) systems. All such sets of 2 or 5 are respectively isomorphic to each other.