Search results
Results From The WOW.Com Content Network
To handle the bounded storage constraint, streaming algorithms use a randomization to produce a non-exact estimation of the distinct number of elements, . State-of-the-art estimators hash every element into a low-dimensional data sketch using a hash function, (). The different techniques can be classified according to the data sketches they store.
dplyr is an R package whose set of functions are designed to enable dataframe (a spreadsheet-like data structure) manipulation in an intuitive, user-friendly way. It is one of the core packages of the popular tidyverse set of packages in the R programming language . [ 1 ]
Within each group use the mean for aggregating together the results, and finally take the median of the group estimates as the final estimate. [ 5 ] The 2007 HyperLogLog algorithm splits the multiset into subsets and estimates their cardinalities, then it uses the harmonic mean to combine them into an estimate for the original cardinality.
The above data can be grouped in order to construct a frequency distribution in any of several ways. One method is to use intervals as a basis. The smallest value in the above data is 8 and the largest is 34. The interval from 8 to 34 is broken up into smaller subintervals (called class intervals). For each class interval, the number of data ...
A pivot table is a table of values which are aggregations of groups of individual values from a more extensive table (such as from a database, spreadsheet, or business intelligence program) within one or more discrete categories. The aggregations or summaries of the groups of the individual terms might include sums, averages, counts, or other ...
A hierarchical query is a type of SQL query that handles hierarchical model data. They are special cases of more general recursive fixpoint queries, which compute transitive closures. In standard SQL:1999 hierarchical queries are implemented by way of recursive common table expressions (CTEs).
The Iris flower data set or Fisher's Iris data set is a multivariate data set used and made famous by the British statistician and biologist Ronald Fisher in his 1936 paper The use of multiple measurements in taxonomic problems as an example of linear discriminant analysis. [1]