Search results
Results From The WOW.Com Content Network
The percentage columns show the distance from the orbit compared to the semimajor axis. E.g. for the Moon, L 1 is 326 400 km from Earth's center, which is 84.9% of the Earth–Moon distance or 15.1% "in front of" (Earthwards from) the Moon; L 2 is located 448 900 km from Earth's center, which is 116.8% of the Earth–Moon distance or 16.8% ...
The average annual solar radiation arriving at the top of the Earth's atmosphere is about 1361 W/m 2. This represents the power per unit area of solar irradiance across the spherical surface surrounding the Sun with a radius equal to the distance to the Earth (1 AU).
695,700 kilometres (432,300 miles) is approximately 10 times the average radius of Jupiter, 109 times the radius of the Earth, and 1/215th of an astronomical unit, the approximate distance between Earth and the Sun.
The three-cell model of the atmosphere of the Earth describes the actual flow of the atmosphere with the tropical-latitude Hadley cell, the mid-latitude Ferrel cell, and the polar cell to describe the flow of energy and the circulation of the planetary atmosphere. Balance is the fundamental principle of the model — that the solar energy ...
The distance between the atmosphere and Earth's axis ... 10 percent of the overall energy transport involved in the Hadley cell. ... encircling Earth's poles;
A large part of the energy that drives the Ferrel cell is provided by the polar and Hadley cells circulating on either side, which drag the air of the Ferrel cell with it. [5] The Ferrel cell, theorized by William Ferrel (1817–1891), is, therefore, a secondary circulation feature, whose existence depends upon the Hadley and polar cells on ...
During the 1960s, spacecraft traveling above Earth's poles discovered a stream of particles flowing out of the Earth's poles, and theorized that there must be an unknown field driving these ...
Sunlight on the surface of Earth is attenuated by Earth's atmosphere, so that less power arrives at the surface (closer to 1,000 W/m 2) in clear conditions when the Sun is near the zenith. [100] Sunlight at the top of Earth's atmosphere is composed (by total energy) of about 50% infrared light, 40% visible light, and 10% ultraviolet light. [101]