Search results
Results From The WOW.Com Content Network
6 different real multiple choice-based exams (735 answer sheets and 33,540 answer boxes) to evaluate computer vision techniques and systems developed for multiple choice test assessment systems. None 735 answer sheets and 33,540 answer boxes Images and .mat file labels Development of multiple choice test assessment systems 2017 [204] [205]
For example, there is a prototype, photonic, quantum memristive device for neuromorphic (quantum-)computers (NC)/artificial neural networks and NC-using quantum materials with some variety of potential neuromorphic computing-related applications, [367] [368] and quantum machine learning is a field with some variety of applications under ...
Chinook, a computer program that plays English draughts; the first to win the world champion title in the competition against humans. [22] Deep Blue, a chess-playing computer developed by IBM which beat Garry Kasparov in 1997. [23] Halite, an artificial intelligence programming competition created by Two Sigma in 2016. [24]
Examples of artificial intelligence algorithms applied to real-world problems. For technologies used in these applications see: Category:Artificial intelligence; Category:Classification algorithms; Category:Machine learning
Examples of applications of computer vision include systems for: Learning 3D shapes has been a challenging task in computer vision. Recent advances in deep learning have enabled researchers to build models that are able to generate and reconstruct 3D shapes from single or multi-view depth maps or silhouettes seamlessly and efficiently.
An AI accelerator, deep learning processor or neural processing unit (NPU) is a class of specialized hardware accelerator [1] or computer system [2] [3] designed to accelerate artificial intelligence (AI) and machine learning applications, including artificial neural networks and computer vision. Typical applications include algorithms for ...
Natural computing, [1] [2] also called natural computation, is a terminology introduced to encompass three classes of methods: 1) those that take inspiration from nature for the development of novel problem-solving techniques; 2) those that are based on the use of computers to synthesize natural phenomena; and 3) those that employ natural materials (e.g., molecules) to compute.
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]