Search results
Results From The WOW.Com Content Network
Survival analysis includes Cox regression (Proportional hazards model) and Kaplan–Meier survival analysis. Procedures for method evaluation and method comparison include ROC curve analysis, [6] Bland–Altman plot, [7] as well as Deming and Passing–Bablok regression. [8]
An important advantage of the Kaplan–Meier curve is that the method can take into account some types of censored data, particularly right-censoring, which occurs if a patient withdraws from a study, is lost to follow-up, or is alive without event occurrence at last follow-up. On the plot, small vertical tick-marks state individual patients ...
S(t) is theoretically a smooth curve, but it is usually estimated using the Kaplan–Meier (KM) curve. The graph shows the KM plot for the aml data and can be interpreted as follows: The x axis is time, from zero (when observation began) to the last observed time point. The y axis is the proportion of subjects surviving. At time zero, 100% of ...
As a counterpart of the Kaplan–Meier curve, which is used to describe the time to a terminal event, recurrent event data can be described using the mean cumulative function, which is the average number of cumulative events experienced by an individual in the study at each point in time since the start of follow-up.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Kaplan-Meier_curve&oldid=301564058"
Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.
In statistics and numerical analysis, isotonic regression or monotonic regression is the technique of fitting a free-form line to a sequence of observations such that the fitted line is non-decreasing (or non-increasing) everywhere, and lies as close to the observations as possible.
Edward Lynn Kaplan (May 11, 1920 – September 26, 2006) [1] was a mathematician most famous for the Kaplan–Meier estimator, [2] developed together with Paul Meier. Biography [ edit ]