Search results
Results From The WOW.Com Content Network
The upstream and downstream portions must be modeled separately with an initial depth of 9.21 m for the upstream portion, and 0.15 m for the downstream portion. The downstream depth should only be modeled until it reaches the conjugate depth of the normal depth, at which point a hydraulic jump will form.
To help visualize the relationship of the upstream Froude number and the flow depth downstream of the hydraulic jump, it is helpful to plot y 2 /y 1 versus the upstream Froude Number, Fr 1. (Figure 8) The value of y 2 /y 1 is a ratio of depths that represent a dimensionless jump height; for example, if y 2 /y 1 = 2, then the jump doubles the ...
A moving jam is a local region of low speed and great density that propagates upstream as a whole localized structure. The jam is limited spatially by two jam fronts. At the downstream jam front, vehicles accelerate to a higher speed downstream of the jam. At the upstream jam front, vehicles decelerate while approaching the jam.
The Parshall Flume acts essentially as a constriction, a downward step, and then an expansion: the upstream section is uniformly convergent and flat, the throat is a short parallel section that slopes downward, and the downstream section is uniformly diverging and slopes upward to an ending elevation that is less than the upstream starting ...
Figure 4: An undular front on a tidal bore. At this point the water is relatively deep and the fractional change in elevation is small. A tidal bore is a hydraulic jump which occurs when the incoming tide forms a wave (or waves) of water that travel up a river or narrow bay against the direction of the current. [16]
The upstream streamlines are uniformly deflected after the shock wave. The most common way to produce an oblique shock wave is to place a wedge into supersonic , compressible flow . Similar to a normal shock wave, the oblique shock wave consists of a very thin region across which nearly discontinuous changes in the thermodynamic properties of a ...
The Euler number (Eu) is a dimensionless number used in fluid flow calculations. It expresses the relationship between a local pressure drop caused by a restriction and the kinetic energy per volume of the flow, and is used to characterize energy losses in the flow, where a perfect frictionless flow corresponds to an Euler number of 0.
This is due to the fact that pressure changes downstream of the exit cannot travel upstream to cause changes in the flow conditions. The right curve of figure 2. represents the case when the reservoir pressure is increased and the receiver pressure is held constant.