Search results
Results From The WOW.Com Content Network
The diagonals of a cube with side length 1. AC' (shown in blue) is a space diagonal with length , while AC (shown in red) is a face diagonal and has length .. In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge.
In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero.
In linear algebra, the main diagonal (sometimes principal diagonal, primary diagonal, leading diagonal, major diagonal, or good diagonal) of a matrix is the list of entries , where =. All off-diagonal elements are zero in a diagonal matrix. The following four matrices have their main diagonals indicated by red ones:
A can therefore be decomposed into a matrix composed of its eigenvectors, a diagonal matrix with its eigenvalues along the diagonal, and the inverse of the matrix of eigenvectors. This is called the eigendecomposition and it is a similarity transformation. Such a matrix A is said to be similar to the diagonal matrix Λ or diagonalizable.
The rule of Sarrus is a mnemonic for the expanded form of this determinant: the sum of the products of three diagonal north-west to south-east lines of matrix elements, minus the sum of the products of three diagonal south-west to north-east lines of elements, when the copies of the first two columns of the matrix are written beside it as in ...
The definition in the first paragraph sums entries across each row. It is therefore sometimes called row diagonal dominance. If one changes the definition to sum down each column, this is called column diagonal dominance. Any strictly diagonally dominant matrix is trivially a weakly chained diagonally dominant matrix.
The determinant of a diagonal matrix is simply the product of all diagonal entries. Such computations generalize easily to A = P D P − 1 {\displaystyle A=PDP^{-1}} . The geometric transformation represented by a diagonalizable matrix is an inhomogeneous dilation (or anisotropic scaling ).
A magic square is an arrangement of numbers in a square grid so that the sum of the numbers along every row, column, and diagonal is the same. Similarly, one may define a magic cube to be an arrangement of numbers in a cubical grid so that the sum of the numbers on the four space diagonals must be the same as the sum of the numbers in each row, each column, and each pillar.