When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Van 't Hoff factor - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_factor

    For most non-electrolytes dissolved in water, the van 't Hoff factor is essentially 1. For most ionic compounds dissolved in water, the van 't Hoff factor is equal to the number of discrete ions in a formula unit of the substance. This is true for ideal solutions only, as occasionally ion pairing occurs in solution. At a given instant a small ...

  3. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".

  4. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...

  5. Equilibrium constant - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_constant

    This equation can be used to calculate the value of log K at a temperature, T 2, knowing the value at temperature T 1. The van 't Hoff equation also shows that, for an exothermic reaction ( Δ H < 0 {\displaystyle \Delta H<0} ), when temperature increases K decreases and when temperature decreases K increases, in accordance with Le Chatelier's ...

  6. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    In 1884, Jacobus van 't Hoff proposed the Van 't Hoff equation describing the temperature dependence of the equilibrium constant for a reversible reaction: ⁡ = where ΔU is the change in internal energy, K is the equilibrium constant of the reaction, R is the universal gas constant, and T is thermodynamic temperature.

  7. Boiling-point elevation - Wikipedia

    en.wikipedia.org/wiki/Boiling-point_elevation

    Equation after including the van 't Hoff factor ΔT b = K b · b solute · i. The above formula reduces precision at high concentrations, due to nonideality of the solution. If the solute is volatile, one of the key assumptions used in deriving the formula is not true because the equation derived is for solutions of non-volatile solutes in a ...

  8. Aquilanti–Mundim deformed Arrhenius model - Wikipedia

    en.wikipedia.org/wiki/Aquilanti–Mundim_Deformed...

    (1) was motivated by the 1884 discovery by van't Hoff [2] of the exponential dependence from the temperature of the equilibrium constants for most reactions: Eq.(1), when used for both a reaction and its inverse, agrees with van't Hoff's equation interpreting chemical equilibrium as dynamical at the microscopic level.

  9. Henry's law - Wikipedia

    en.wikipedia.org/wiki/Henry's_law

    The proportionality factor is called Henry's law constant. It was formulated by the English chemist William Henry , who studied the topic in the early 19th century. In simple words, we can say that the partial pressure of a gas in vapour phase is directly proportional to the mole fraction of a gas in solution.