Search results
Results From The WOW.Com Content Network
Higher density means more data moves under the head for any given mechanical movement. For example, we can calculate the effective transfer speed for a floppy disc by determining how fast the bits move under the head. A standard 3½-inch floppy disk spins at 300 rpm, and the innermost track is about 66 mm long (10.5 mm radius). At 300 rpm the ...
If the function to be revolved is a function of x, the following integral represents the volume of the solid of revolution: π ∫ a b R ( x ) 2 d x {\displaystyle \pi \int _{a}^{b}R(x)^{2}\,dx} where R ( x ) is the distance between the function and the axis of rotation.
As an effectively 1-D model, the flow into and out of the disk is axial, and all velocities are transversely uniform. This is a control-volume analysis; the control volume must contain all incoming and outgoing flow in order to use the conservation equations. The flow is non-compressible. Density is constant, and there is no heat transfer.
The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .
High density (HD) 3½-inch disks switch to a cobalt disk coating, just as with 5¼-inch HD disks. Drives use 700-oersted write heads for a density of 17,434 bpi. Extra-high density (ED) doubles the capacity over HD by using a barium ferrite coating and a special write head that allows the use of perpendicular recording. [1] [2]
The Bekenstein bound limits the amount of information that can be stored within a spherical volume to the entropy of a black hole with the same surface area. Thermodynamics limit the data storage of a system based on its energy, number of particles and particle modes. In practice, it is a stronger bound than the Bekenstein bound. [1]
3. Celebrate Function, Not Just Form. Your body is more than a sculpture to be admired. It is the vehicle or vessel for your life and through which you may accomplish your dreams.
The surface-area-to-volume ratio has physical dimension inverse length (L −1) and is therefore expressed in units of inverse metre (m-1) or its prefixed unit multiples and submultiples. As an example, a cube with sides of length 1 cm will have a surface area of 6 cm 2 and a volume of 1 cm 3. The surface to volume ratio for this cube is thus