Ads
related to: wire length calculator ohms and amps
Search results
Results From The WOW.Com Content Network
The electrical resistance of a uniform conductor is given in terms of resistivity by: [40] = where ℓ is the length of the conductor in SI units of meters, a is the cross-sectional area (for a round wire a = πr 2 if r is radius) in units of meters squared, and ρ is the resistivity in units of ohm·meters.
The resistance of copper wire is approximately 1 ohms / 1000 feet for 10 AWG, 10 ohms / 1000 feet for 20 AWG, 100 ohms / 1000 feet for 30 AWG, and so on. [ 5 ] : 27 Because aluminum wire has a conductivity of approximately 61% of copper, an aluminum wire has nearly the same resistance as a copper wire that is two sizes ...
In electrical engineering, electrical length is a dimensionless parameter equal to the physical length of an electrical conductor such as a cable or wire, divided by the wavelength of alternating current at a given frequency traveling through the conductor. [1] [2] [3] In other words, it is the length of the conductor measured in wavelengths.
In some applications wire sizes are specified as the cross sectional area of the wire, usually in mm 2. Advantages of this system include the ability to readily calculate the physical dimensions or weight of wire, ability to take account of non-circular wire, and ease of calculation of electrical properties.
where is the length of the conductor, measured in metres (m), A is the cross-sectional area of the conductor measured in square metres (m 2), σ is the electrical conductivity measured in siemens per meter (S·m −1), and ρ is the electrical resistivity (also called specific electrical resistance) of the material, measured in ohm-metres (Ω ...
The formula to calculate the area in circular mil for any given AWG (American Wire Gauge) size is as follows.represents the area of number AWG. = (() /) For example, a number 12 gauge wire would use =:
The resistivity can be expressed using the SI unit ohm metre (Ω⋅m) — i.e. ohms multiplied by square metres (for the cross-sectional area) then divided by metres (for the length). Both resistance and resistivity describe how difficult it is to make electrical current flow through a material, but unlike resistance, resistivity is an ...
The typical digital propagation delay of a resistive wire is about half of R times C; since both R and C are proportional to wire length, the delay scales as the square of wire length. Charge spreads by diffusion in such a wire, as explained by Lord Kelvin in the mid nineteenth century. [ 2 ]