Search results
Results From The WOW.Com Content Network
The sum of the squared lengths of any two chords intersecting at right angles at a given point is the same as that of any other two perpendicular chords intersecting at the same point and is given by 8r 2 − 4p 2, where r is the circle radius, and p is the distance from the centre point to the point of intersection.
Ding Yidong magic circles – numbers on each circle (solid colour) sum to 200 and numbers on each diameter (dashed grey) sum to 325. Ding Yidong was a mathematician contemporary with Yang Hui. In his magic circle with 6 rings, the unit numbers of the 5 outer rings, combined with the unit number of the center ring, form the following magic square:
The area of a triangle is proportional to the excess of its angle sum over 180°. Two triangles with the same angle sum are equal in area. There is an upper bound for the area of triangles. The composition (product) of two reflections-across-a-great-circle may be considered as a rotation about either of the points of intersection of their axes.
An ellipse can be defined as the locus of points for which the sum of the distances to two given foci is constant. A circle is the special case of an ellipse in which the two foci coincide with each other. Thus, a circle can be more simply defined as the locus of points each of which is a fixed distance from a single given focus.
Circle with similar triangles: circumscribed side, inscribed side and complement, inscribed split side and complement. Let one side of an inscribed regular n-gon have length s n and touch the circle at points A and B. Let A′ be the point opposite A on the circle, so that A′A is a diameter, and A′AB is an inscribed triangle on a diameter.
Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that
A rose is a wedge sum of circles. That is, the rose is the quotient space C/S, where C is a disjoint union of circles and S a set consisting of one point from each circle. As a cell complex, a rose has a single vertex, and one edge for each circle.
where C is the circumference of a circle, d is the diameter, and r is the radius. More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width. = where A is the area of a circle. More generally, =