Ad
related to: doppler ultrasound video
Search results
Results From The WOW.Com Content Network
All modern ultrasound scanners use pulsed Doppler to measure velocity. Pulsed wave instruments transmit and receive series of pulses. The frequency shift of each pulse is ignored, however the relative phase changes of the pulses are used to obtain the frequency shift (since frequency is the rate of change of phase).
Unlike 1D Doppler imaging, which can only provide one-dimensional velocity and has dependency on the beam to flow angle, [4] 2D velocity estimation using Doppler ultrasound is able to generate velocity vectors with axial and lateral velocity components. 2D velocity is useful even if complex flow conditions such as stenosis and bifurcation exist.
Medical ultrasound includes diagnostic techniques (mainly imaging techniques) using ultrasound, as well as therapeutic applications of ultrasound. In diagnosis, it is used to create an image of internal body structures such as tendons, muscles, joints, blood vessels, and internal organs, to measure some characteristics (e.g., distances and velocities) or to generate an informative audible sound.
The use of ultrasonography in a medical application was first used in the late 1940s in the United States. This use was soon followed in other countries with further research and development being carried out. The first report on Doppler ultrasound as a diagnostic tool for vascular disease was published in 1967–1968.
The ultrasound probe emits a high-frequency sound wave (usually a multiple of 2 MHz) that bounces off various substances in the body. These echoes are detected by a sensor in the probe. In the case of blood in an artery, the echoes have different frequencies depending on the direction and speed of the blood because of the Doppler effect. [2]
Doppler ultrasonography showing absence of flow and hyperechogenic content in deep vein thrombosis of the subsartorial vein. Coronal plane, seen from medial side of lower leg, showing thrombosis of the fibular veins , with hyperechoic content and only marginal blood flow.
Functional ultrasound imaging (fUS) is a medical ultrasound imaging technique for detecting or measuring changes in neural activities or metabolism, such as brain activity loci, typically through measuring hemodynamic (blood flow) changes. It is an extension of Doppler ultrasonography.
The Tissue Doppler method is based on the colour Doppler, giving a velocity field with velocity vectors along the ultrasound beam over the whole sector. It measures the velocity gradient between two points along the ultrasound beam with a set distance. [1] It gives the same result as the velocity gradient. [6]