Search results
Results From The WOW.Com Content Network
The standard enthalpy of reaction (denoted ) for a chemical reaction is the difference between total product and total reactant molar enthalpies, calculated for substances in their standard states. The value can be approximately interpreted in terms of the total of the chemical bond energies for bonds broken and bonds formed.
The bond dissociation energy (enthalpy) [4] is also referred to as bond disruption energy, bond energy, bond strength, or binding energy (abbreviation: BDE, BE, or D). It is defined as the standard enthalpy change of the following fission: R—X → R + X. The BDE, denoted by Dº(R—X), is usually derived by the thermochemical equation,
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
Enthalpy is the transfer of energy in a reaction (for chemical reactions, it is in the form of heat) and is the change in enthalpy. Δ H {\displaystyle \Delta H} is a state function, meaning that Δ H {\displaystyle \Delta H} is independent of processes occurring between initial and final states.
The term bond-dissociation energy is similar to the related notion of bond-dissociation enthalpy (or bond enthalpy), which is sometimes used interchangeably.However, some authors make the distinction that the bond-dissociation energy (D 0) refers to the enthalpy change at 0 K, while the term bond-dissociation enthalpy is used for the enthalpy change at 298 K (unambiguously denoted DH° 298).
For many substances, the formation reaction may be considered as the sum of a number of simpler reactions, either real or fictitious. The enthalpy of reaction can then be analyzed by applying Hess' law, which states that the sum of the enthalpy changes for a number of individual reaction steps equals the enthalpy change of the overall reaction.
Born–Haber cycles are used primarily as a means of calculating lattice energy (or more precisely enthalpy [note 1]), which cannot otherwise be measured directly. The lattice enthalpy is the enthalpy change involved in the formation of an ionic compound from gaseous ions (an exothermic process ), or sometimes defined as the energy to break the ...
TST has been less successful in its original goal of calculating absolute reaction rate constants because the calculation of absolute reaction rates requires precise knowledge of potential energy surfaces, [2] but it has been successful in calculating the standard enthalpy of activation (ΔH ‡, also written Δ ‡ H ɵ), the standard entropy ...