Ad
related to: convert fractions to decimals pdf
Search results
Results From The WOW.Com Content Network
Thus, it is often useful to convert repeating decimals into fractions. A conventional way to indicate a repeating decimal is to place a bar (known as a vinculum) over the digits that repeat, for example 0. 789 = 0.789789789... For repeating patterns that begin immediately after the decimal point, the result of the conversion is the fraction ...
According to George Sarton, "The Thiende was the earliest treatise deliberately devoted to the study of decimal fractions, and STEVIN's account is the earliest account of them. Hence, even if decimal fractions were used previously by other men, it was STEVIN – and no other – who introduced them into the mathematical domain.
Every decimal representation of a rational number can be converted to a fraction by converting it into a sum of the integer, non-repeating, and repeating parts and then converting that sum to a single fraction with a common denominator.
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Any such decimal fraction, i.e.: d n = 0 for n > N, may be converted to its equivalent infinite decimal expansion by replacing d N by d N − 1 and replacing all subsequent 0s by 9s (see 0.999...). In summary, every real number that is not a decimal fraction has a unique infinite decimal expansion.
Fractions such as 1 ⁄ 3 are displayed as decimal approximations, for example rounded to 0.33333333. Also, some fractions (such as 1 ⁄ 7, which is 0.14285714285714; to 14 significant figures) can be difficult to recognize in decimal form; as a result, many scientific calculators are able to work in vulgar fractions or mixed numbers.
The Q notation is a way to specify the parameters of a binary fixed point number format. For example, in Q notation, the number format denoted by Q8.8 means that the fixed point numbers in this format have 8 bits for the integer part and 8 bits for the fraction part.