Search results
Results From The WOW.Com Content Network
A vertex with a large degree, also called a heavy node, results in a large diagonal entry in the Laplacian matrix dominating the matrix properties. Normalization is aimed to make the influence of such vertices more equal to that of other vertices, by dividing the entries of the Laplacian matrix by the vertex degrees.
This involves formulating discrete operators on graphs which are analogous to differential operators in calculus, such as graph Laplacians (or discrete Laplace operators) as discrete versions of the Laplacian, and using these operators to formulate differential equations, difference equations, or variational models on graphs which can be ...
In the mathematical field of algebraic graph theory, the degree matrix of an undirected graph is a diagonal matrix which contains information about the degree of each vertex—that is, the number of edges attached to each vertex. [1]
In mathematics, the discrete Laplace operator is an analog of the continuous Laplace operator, defined so that it has meaning on a graph or a discrete grid.For the case of a finite-dimensional graph (having a finite number of edges and vertices), the discrete Laplace operator is more commonly called the Laplacian matrix.
Relaxation methods are important especially in the solution of linear systems used to model elliptic partial differential equations, such as Laplace's equation and its generalization, Poisson's equation. These equations describe boundary-value problems, in which the solution-function's values are specified on boundary of a domain; the problem ...
In mathematics, the biharmonic equation is a fourth-order partial differential equation which arises in areas of continuum mechanics, including linear elasticity theory and the solution of Stokes flows. Specifically, it is used in the modeling of thin structures that react elastically to external forces.
A fan graph is a graph on n + 1 vertices where there is an edge between vertex i and n + 1 for all i = 1, 2, 3, …, n, and there is an edge between vertex i and i + 1 for all i = 1, 2, 3, …, n – 1. The resistance distance between vertex n + 1 and vertex i ∈ {1, 2, 3, …, n} is +
The algebraic connectivity (also known as Fiedler value or Fiedler eigenvalue after Miroslav Fiedler) of a graph G is the second-smallest eigenvalue (counting multiple eigenvalues separately) of the Laplacian matrix of G. [1] This eigenvalue is greater than 0 if and only if G is a connected graph. This is a corollary to the fact that the number ...