When.com Web Search

  1. Ad

    related to: hamilton path and circuit calculator desmos

Search results

  1. Results From The WOW.Com Content Network
  2. Hamiltonian path problem - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path_problem

    A verifier algorithm for Hamiltonian path will take as input a graph G, starting vertex s, and ending vertex t. Additionally, verifiers require a potential solution known as a certificate, c. For the Hamiltonian Path problem, c would consist of a string of vertices where the first vertex is the start of the proposed path and the last is the end ...

  3. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path.

  4. Lovász conjecture - Wikipedia

    en.wikipedia.org/wiki/Lovász_conjecture

    Another version of Lovász conjecture states that . Every finite connected vertex-transitive graph contains a Hamiltonian cycle except the five known counterexamples.. There are 5 known examples of vertex-transitive graphs with no Hamiltonian cycles (but with Hamiltonian paths): the complete graph, the Petersen graph, the Coxeter graph and two graphs derived from the Petersen and Coxeter ...

  5. Path (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Path_(graph_theory)

    A three-dimensional hypercube graph showing a Hamiltonian path in red, and a longest induced path in bold black. In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices are distinct, so are the edges).

  6. Icosian calculus - Wikipedia

    en.wikipedia.org/wiki/Icosian_Calculus

    (Hamilton originally thought in terms of moves between the faces of an icosahedron, which is equivalent by duality. This is the origin of the name "icosian". [3]) Hamilton's work in this area resulted indirectly in the terms Hamiltonian circuit and Hamiltonian path in graph theory. [4]

  7. Ore's theorem - Wikipedia

    en.wikipedia.org/wiki/Ore's_theorem

    Illustration for the proof of Ore's theorem. In a graph with the Hamiltonian path v 1...v n but no Hamiltonian cycle, at most one of the two edges v 1 v i and v i − 1 v n (shown as blue dashed curves) can exist. For, if they both exist, then adding them to the path and removing the (red) edge v i − 1 v i would produce a Hamiltonian cycle.

  8. Tournament (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tournament_(graph_theory)

    The Hamiltonian paths are in one-to-one correspondence with the minimal feedback arc sets of the tournament. [5] Rédei's theorem is the special case for complete graphs of the Gallai–Hasse–Roy–Vitaver theorem , relating the lengths of paths in orientations of graphs to the chromatic number of these graphs.

  9. Hamiltonian decomposition - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_decomposition

    For a Hamiltonian decomposition to exist in an undirected graph, the graph must be connected and regular of even degree.A directed graph with such a decomposition must be strongly connected and all vertices must have the same in-degree and out-degree as each other, but this degree does not need to be even.