When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    Below is an example of a learning algorithm for a single-layer perceptron with a single output unit. For a single-layer perceptron with multiple output units, since the weights of one output unit are completely separate from all the others', the same algorithm can be run for each output unit.

  3. Mark I Perceptron - Wikipedia

    en.wikipedia.org/wiki/Mark_I_Perceptron

    One of the later experiments distinguished a square from a circle printed on paper. The shapes were perfect and their sizes fixed; the only variation was in their position and orientation. The Mark I Perceptron achieved 99.8% accuracy on a test dataset with 500 neurons in a single layer. The size of the training dataset was 10,000 example ...

  4. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    Cite this page; Get shortened URL; Download QR code; ... It can be derived as the backpropagation algorithm for a single-layer neural ... The perceptron uses the ...

  5. Universal approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_approximation...

    In particular, this shows that a perceptron network with a single infinitely wide hidden layer can approximate arbitrary functions. Such an f {\displaystyle f} can also be approximated by a network of greater depth by using the same construction for the first layer and approximating the identity function with later layers.

  6. Perceptrons (book) - Wikipedia

    en.wikipedia.org/wiki/Perceptrons_(book)

    The perceptron is a neural net developed by psychologist Frank Rosenblatt in 1958 and is one of the most famous machines of its period. [11] [12] In 1960, Rosenblatt and colleagues were able to show that the perceptron could in finitely many training cycles learn any task that its parameters could embody.

  7. History of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/History_of_artificial...

    Artificial neural networks (ANNs) are models created using machine learning to perform a number of tasks.Their creation was inspired by biological neural circuitry. [1] [a] While some of the computational implementations ANNs relate to earlier discoveries in mathematics, the first implementation of ANNs was by psychologist Frank Rosenblatt, who developed the perceptron. [1]

  8. Hopfield network - Wikipedia

    en.wikipedia.org/wiki/Hopfield_network

    A Hopfield network (or associative memory) is a form of recurrent neural network, or a spin glass system, that can serve as a content-addressable memory.The Hopfield network, named for John Hopfield, consists of a single layer of neurons, where each neuron is connected to every other neuron except itself.

  9. Deeplearning4j - Wikipedia

    en.wikipedia.org/wiki/Deeplearning4j

    Eclipse Deeplearning4j is a programming library written in Java for the Java virtual machine (JVM). [ 2 ] [ 3 ] It is a framework with wide support for deep learning algorithms. [ 4 ] Deeplearning4j includes implementations of the restricted Boltzmann machine , deep belief net , deep autoencoder, stacked denoising autoencoder and recursive ...