When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    Attention module – this can be a dot product of recurrent states, or the query-key-value fully-connected layers. The output is a 100-long vector w. H 500×100. 100 hidden vectors h concatenated into a matrix c 500-long context vector = H * w. c is a linear combination of h vectors weighted by w.

  3. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    Multiheaded attention, block diagram Exact dimension counts within a multiheaded attention module. One set of (,,) matrices is called an attention head, and each layer in a transformer model has multiple attention heads. While each attention head attends to the tokens that are relevant to each token, multiple attention heads allow the model to ...

  4. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    In September 2022, Meta announced that PyTorch would be governed by the independent PyTorch Foundation, a newly created subsidiary of the Linux Foundation. [ 24 ] PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo , a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and ...

  5. Graph neural network - Wikipedia

    en.wikipedia.org/wiki/Graph_neural_network

    The graph attention network (GAT) was introduced by Petar Veličković et al. in 2018. [11] Graph attention network is a combination of a GNN and an attention layer. The implementation of attention layer in graphical neural networks helps provide attention or focus to the important information from the data instead of focusing on the whole data.

  6. Glossary of artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_artificial...

    Pronounced "A-star". A graph traversal and pathfinding algorithm which is used in many fields of computer science due to its completeness, optimality, and optimal efficiency. abductive logic programming (ALP) A high-level knowledge-representation framework that can be used to solve problems declaratively based on abductive reasoning. It extends normal logic programming by allowing some ...

  7. Attention - Wikipedia

    en.wikipedia.org/wiki/Attention

    Attention is best described as the sustained focus of cognitive resources on information while filtering or ignoring extraneous information. Attention is a very basic function that often is a precursor to all other neurological/cognitive functions. As is frequently the case, clinical models of attention differ from investigation models.

  8. Attentional shift - Wikipedia

    en.wikipedia.org/wiki/Attentional_shift

    Attention can be guided by top-down processing or via bottom up processing. Posner's model of attention includes a posterior attentional system involved in the disengagement of stimuli via the parietal cortex, the shifting of attention via the superior colliculus and the engagement of a new target via the pulvinar. The anterior attentional ...

  9. Visual temporal attention - Wikipedia

    en.wikipedia.org/wiki/Visual_temporal_attention

    Visual temporal attention is a special case of visual attention that involves directing attention to specific instant of time. Similar to its spatial counterpart visual spatial attention , these attention modules have been widely implemented in video analytics in computer vision to provide enhanced performance and human interpretable ...