When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]

  3. Lanczos algorithm - Wikipedia

    en.wikipedia.org/wiki/Lanczos_algorithm

    The matrix–vector multiplication can be done in () arithmetical operations where is the average number of nonzero elements in a row. The total complexity is thus O ( d m n ) {\displaystyle O(dmn)} , or O ( d n 2 ) {\displaystyle O(dn^{2})} if m = n {\displaystyle m=n} ; the Lanczos algorithm can be very fast for sparse matrices.

  4. Method of averaging - Wikipedia

    en.wikipedia.org/wiki/Method_of_averaging

    The purpose of the method of averaging is to tell us the qualitative behavior of the vector field when we average it over a period of time. It guarantees that the solution y ( t ) {\displaystyle y(t)} approximates x ( t ) {\displaystyle x(t)} for times t = O ( 1 / ε ) . {\displaystyle t={\mathcal {O}}(1/\varepsilon ).}

  5. Los disparates - Wikipedia

    en.wikipedia.org/wiki/Los_disparates

    Los disparates (The Follies), also known as Proverbios or Sueños , is a series of prints in etching and aquatint, with retouching in drypoint and engraving, created by Spanish painter and printmaker Francisco Goya between 1815 and 1823.

  6. Gauss's method - Wikipedia

    en.wikipedia.org/wiki/Gauss's_method

    The initial derivation begins with vector addition to determine the orbiting body's position vector. Then based on the conservation of angular momentum and Keplerian orbit principles (which states that an orbit lies in a two dimensional plane in three dimensional space), a linear combination of said position vectors is established.

  7. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.

  8. Gram–Schmidt process - Wikipedia

    en.wikipedia.org/wiki/Gram–Schmidt_process

    If the Gram–Schmidt process is applied to a linearly dependent sequence, it outputs the 0 vector on the th step, assuming that is a linear combination of , …,. If an orthonormal basis is to be produced, then the algorithm should test for zero vectors in the output and discard them because no multiple of a zero vector can have a length of 1.

  9. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    In numerical analysis, a quasi-Newton method is an iterative numerical method used either to find zeroes or to find local maxima and minima of functions via an iterative recurrence formula much like the one for Newton's method, except using approximations of the derivatives of the functions in place of exact derivatives.