Search results
Results From The WOW.Com Content Network
The first method developed the solution in a series which was then proved convergent within limits. The second method, which is now referred to as the Lyapunov stability criterion or the Direct Method, makes use of a Lyapunov function V(x) which has an analogy to the potential
In the theory of ordinary differential equations (ODEs), Lyapunov functions, named after Aleksandr Lyapunov, are scalar functions that may be used to prove the stability of an equilibrium of an ODE. Lyapunov functions (also called Lyapunov’s second method for stability) are important to stability theory of dynamical systems and control theory.
In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is A X A H − X + Q = 0 {\displaystyle AXA^{H}-X+Q=0} where Q {\displaystyle Q} is a Hermitian matrix and A H {\displaystyle A^{H}} is the conjugate transpose of A {\displaystyle A} , while the continuous-time Lyapunov equation is
Some extensions of Liapunov's second method, IRE Transactions on Circuit Theory, CT-7, pp. 520–527, 1960. (PDF Archived 2019-04-30 at the Wayback Machine) Barbashin, E. A.; Nikolai N. Krasovskii (1952). Об устойчивости движения в целом [On the stability of motion as a whole]. Doklady Akademii Nauk SSSR (in Russian).
Lyapunov functions are used extensively in control theory to ensure different forms of system stability. The state of a system at a particular time is often described by a multi-dimensional vector. A Lyapunov function is a nonnegative scalar measure of this multi-dimensional state.
The ordinary Lyapunov function is used to test whether a dynamical system is (Lyapunov) stable or (more restrictively) asymptotically stable. Lyapunov stability means that if the system starts in a state x ≠ 0 {\displaystyle x\neq 0} in some domain D , then the state will remain in D for all time.
If, in addition, all eigenvalues of have negative real parts (is stable), and the unique solution of the Lyapunov equation + = is positive definite, the system is controllable. The solution is called the Controllability Gramian and can be expressed as W c = ∫ 0 ∞ e A τ B B T e A T τ d τ {\displaystyle {\boldsymbol {W_{c}}}=\int _{0 ...
Lyapunov–Schmidt reduction has been used in economics, natural sciences, and engineering [1] often in combination with bifurcation theory, perturbation theory, and regularization. [ 1 ] [ 2 ] [ 3 ] LS reduction is often used to rigorously regularize partial differential equation models in chemical engineering resulting in models that are ...