When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.

  3. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    This technique is used in stochastic gradient descent and as an extension to the backpropagation algorithms used to train artificial neural networks. [29] [30] In the direction of updating, stochastic gradient descent adds a stochastic property. The weights can be used to calculate the derivatives.

  4. Reparameterization trick - Wikipedia

    en.wikipedia.org/wiki/Reparameterization_trick

    It allows for the efficient computation of gradients through random variables, enabling the optimization of parametric probability models using stochastic gradient descent, and the variance reduction of estimators. It was developed in the 1980s in operations research, under the name of "pathwise gradients", or "stochastic gradients".

  5. Least mean squares filter - Wikipedia

    en.wikipedia.org/wiki/Least_mean_squares_filter

    This makes it very hard (if not impossible) to choose a learning rate that guarantees stability of the algorithm (Haykin 2002). The Normalised least mean squares filter (NLMS) is a variant of the LMS algorithm that solves this problem by normalising with the power of the input. The NLMS algorithm can be summarised as:

  6. Stochastic variance reduction - Wikipedia

    en.wikipedia.org/wiki/Stochastic_variance_reduction

    Stochastic variance reduction methods converge almost as fast as the gradient descent method's ((/) ⁡ (/)) rate, despite using only a stochastic gradient, at a / lower cost than gradient descent. Accelerated methods in the stochastic variance reduction framework achieve even faster convergence rates, requiring only

  7. Stochastic gradient Langevin dynamics - Wikipedia

    en.wikipedia.org/wiki/Stochastic_Gradient_Langev...

    Like stochastic gradient descent, SGLD is an iterative optimization algorithm which uses minibatching to create a stochastic gradient estimator, as used in SGD to optimize a differentiable objective function. [1] Unlike traditional SGD, SGLD can be used for Bayesian learning as a sampling method.

  8. Deep backward stochastic differential equation method

    en.wikipedia.org/wiki/Deep_backward_stochastic...

    The deep BSDE method constructs neural networks to approximate the solutions for and , and utilizes stochastic gradient descent and other optimization algorithms for training. [1] The fig illustrates the network architecture for the deep BSDE method.

  9. Limited-memory BFGS - Wikipedia

    en.wikipedia.org/wiki/Limited-memory_BFGS

    The algorithm starts with an initial estimate of the optimal value, , and proceeds iteratively to refine that estimate with a sequence of better estimates ,, ….The derivatives of the function := are used as a key driver of the algorithm to identify the direction of steepest descent, and also to form an estimate of the Hessian matrix (second derivative) of ().