Search results
Results From The WOW.Com Content Network
a real value ε, the tolerance for the stopping criterion. Initialize: Set P = ∅. Set R = {1, ..., n}. Set x to an all-zero vector of dimension n. Set w = A T (y − Ax). Let w R denote the sub-vector with indexes from R; Main loop: while R ≠ ∅ and max(w R) > ε: Let j in R be the index of max(w R) in w. Add j to P. Remove j from R.
Examples of such matrices commonly arise from the discretization of 1D Poisson equation and natural cubic spline interpolation. Thomas' algorithm is not stable in general, but is so in several special cases, such as when the matrix is diagonally dominant (either by rows or columns) or symmetric positive definite ; [ 1 ] [ 2 ] for a more precise ...
Consider the following example. The dark cells in the grid in figure (a) represent that they are occupied and the white ones are empty. So by running H–K algorithm on this input we would get the output as shown in figure (b) with all the clusters labeled.
In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges.
If these fall below some tolerance, then the cycle is stopped and the lowest point in the simplex returned as a proposed optimum. Note that a very "flat" function may have almost equal function values over a large domain, so that the solution will be sensitive to the tolerance. Nash adds the test for shrinkage as another termination criterion. [6]
a k is the "contrapoint," i.e., a point such that f(a k) and f(b k) have opposite signs, so the interval [a k, b k] contains the solution. Furthermore, |f(b k)| should be less than or equal to |f(a k)|, so that b k is a better guess for the unknown solution than a k. b k−1 is the previous iterate (for the first iteration, we set b k−1 = a 0).
Closed form solutions can be computed for special cases such as symmetric matrices with all diagonal and off-diagonal elements equal [7] or Toeplitz matrices [8] and for the general case as well. [9] [10] In general, the inverse of a tridiagonal matrix is a semiseparable matrix and vice versa. [11]
For example, in the MATLAB or GNU Octave function pinv, the tolerance is taken to be t = ε⋅max(m, n)⋅max(Σ), where ε is the machine epsilon. The computational cost of this method is dominated by the cost of computing the SVD, which is several times higher than matrix–matrix multiplication, even if a state-of-the art implementation ...