Search results
Results From The WOW.Com Content Network
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...
In statistics, especially in Bayesian statistics, the kernel of a probability density function (pdf) or probability mass function (pmf) is the form of the pdf or pmf in which any factors that are not functions of any of the variables in the domain are omitted. [1] Note that such factors may well be functions of the parameters of the
Discrete random variable. Probability mass function; Constant random variable; Expected value. Jensen's inequality; Variance. Standard deviation; Geometric standard deviation; Multivariate random variable. Joint probability distribution; Marginal distribution; Kirkwood approximation; Independent identically-distributed random variables
A mixed random variable is a random variable whose cumulative distribution function is neither discrete nor everywhere-continuous. [10] It can be realized as a mixture of a discrete random variable and a continuous random variable; in which case the CDF will be the weighted average of the CDFs of the component variables.
In probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables.
In statistics, a truncated distribution is a conditional distribution that results from restricting the domain of some other probability distribution.Truncated distributions arise in practical statistics in cases where the ability to record, or even to know about, occurrences is limited to values which lie above or below a given threshold or within a specified range.
A probability mass function differs from a probability density function (PDF) in that the latter is associated with continuous rather than discrete random variables. A PDF must be integrated over an interval to yield a probability. [3] The value of the random variable having the largest probability mass is called the mode.
. the random variables (X n) n∈ all have the same distribution. Note that the random variables of the sequence (X n) n∈ don't need to be independent. The interesting point is to admit some dependence between the random number N of terms and the sequence (X n) n∈.