Search results
Results From The WOW.Com Content Network
A closely related result, Wagner's theorem, characterizes the planar graphs by their minors in terms of the same two forbidden graphs and ,. Every Kuratowski subgraph is a special case of a minor of the same type, and while the reverse is not true, it is not difficult to find a Kuratowski subgraph (of one type or the other) from one of these ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
The graphs that are both perfect graphs and -perfect graphs are exactly the chordal graphs. On even-hole-free graphs more generally, the degeneracy ordering approximates the optimal coloring to within at most twice the optimal number of colors; that is, its approximation ratio is 2. [20]
Since such graphs have a unique embedding (up to flipping and the choice of the external face), the next bigger graph, if still planar, must be a refinement of the former graph. This allows to reduce the planarity test to just testing for each step whether the next added edge has both ends in the external face of the current embedding.
De Bruijn–ErdÅ‘s theorem (graph theory) De Finetti's theorem (probability) De Franchis theorem (Riemann surfaces) De Gua's theorem ; De Moivre's theorem (complex analysis) De Rham's theorem (differential topology) Deduction theorem ; Denjoy theorem (dynamical systems) Denjoy–Carleman theorem (functional analysis)
The discharging method is used to prove that every graph in a certain class contains some subgraph from a specified list. The presence of the desired subgraph is then often used to prove a coloring result. [1] Most commonly, discharging is applied to planar graphs. Initially, a charge is assigned to each face and each vertex of the graph. The ...
Trending: Studies show 50% of consumers think Financial Advisors cost much more than they do — to debunk this, this company provides matching for free and a complimentary first call with the ...
In the monadic second-order logic of graphs, the variables represent objects of up to four types: vertices, edges, sets of vertices, and sets of edges. There are two main variations of monadic second-order graph logic: MSO 1 in which only vertex and vertex set variables are allowed, and MSO 2 in which all four types of variables are allowed ...