Ads
related to: linear functions and equations graph
Search results
Results From The WOW.Com Content Network
A linear function is a polynomial function in which the variable x has degree at most one: [2] = +. Such a function is called linear because its graph, the set of all points (, ()) in the Cartesian plane, is a line. The coefficient a is called the slope of the function and of the line (see below).
In mathematics, the term linear function refers to two distinct but related notions: [1] In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. [2] For distinguishing such a linear function from the other concept, the term affine function is often used ...
The phrase "linear equation" takes its origin in this correspondence between lines and equations: a linear equation in two variables is an equation whose solutions form a line. If b ≠ 0 , the line is the graph of the function of x that has been defined in the preceding section.
Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right). In science and engineering, a log–log graph or log–log plot is a two-dimensional graph of numerical data that uses logarithmic scales on both the horizontal and vertical axes.
Constant function: polynomial of degree zero, graph is a horizontal straight line; Linear function: First degree polynomial, graph is a straight line. Quadratic function: Second degree polynomial, graph is a parabola. Cubic function: Third degree polynomial. Quartic function: Fourth degree polynomial. Quintic function: Fifth degree polynomial.
In three-dimensional Euclidean space, these three planes represent solutions to linear equations, and their intersection represents the set of common solutions: in this case, a unique point. The blue line is the common solution to two of these equations. Linear algebra is the branch of mathematics concerning linear equations such as:
Linearity of a homogenous differential equation means that if two functions f and g are solutions of the equation, then any linear combination af + bg is, too. In instrumentation, linearity means that a given change in an input variable gives the same change in the output of the measurement apparatus: this is highly desirable in scientific work.
A prototypical example that gives linear maps their name is a function ::, of which the graph is a line through the origin. [ 7 ] More generally, any homothety v ↦ c v {\textstyle \mathbf {v} \mapsto c\mathbf {v} } centered in the origin of a vector space is a linear map (here c is a scalar).