Ads
related to: chemical equilibrium
Search results
Results From The WOW.Com Content Network
The concept of chemical equilibrium was developed in 1803, after Berthollet found that some chemical reactions are reversible. [4] For any reaction mixture to exist at equilibrium, the rates of the forward and backward (reverse) reactions must be equal. In the following chemical equation, arrows point both ways to indicate equilibrium. [5]
Equilibrium chemistry is concerned with systems in chemical equilibrium. The unifying principle is that the free energy of a system at equilibrium is the minimum possible, so that the slope of the free energy with respect to the reaction coordinate is zero.
In chemistry, Le Chatelier's principle (pronounced UK: / l ə ʃ æ ˈ t ɛ l j eɪ / or US: / ˈ ʃ ɑː t əl j eɪ /) [1] is a principle used to predict the effect of a change in conditions on chemical equilibrium. [2] Other names include Chatelier's principle, Braun–Le Chatelier principle, Le Chatelier–Braun principle or the equilibrium ...
The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change. For a given set of reaction conditions, the equilibrium constant is ...
Equilibrium constant, a quantity characterizing a chemical equilibrium in a chemical reaction; Partition equilibrium, a type of chromatography that is typically used in GC; Quasistatic equilibrium, the quasi-balanced state of a thermodynamic system near to equilibrium in some sense or degree; Schlenk equilibrium, a chemical equilibrium named ...
where ln denotes the natural logarithm, is the thermodynamic equilibrium constant, and R is the ideal gas constant.This equation is exact at any one temperature and all pressures, derived from the requirement that the Gibbs free energy of reaction be stationary in a state of chemical equilibrium.
The magnitude of the equilibrium constant depends on the Gibbs free energy change for the reaction. [2] So, when the free energy change is large (more than about 30 kJ mol −1), the equilibrium constant is large (log K > 3) and the concentrations of the reactants at equilibrium are very small. Such a reaction is sometimes considered to be an ...
In 1884, Jacobus van 't Hoff proposed the Van 't Hoff equation describing the temperature dependence of the equilibrium constant for a reversible reaction: = where ΔU is the change in internal energy, K is the equilibrium constant of the reaction, R is the universal gas constant, and T is thermodynamic temperature.