Search results
Results From The WOW.Com Content Network
The Reynolds number is the ratio of inertial forces to viscous forces within a fluid that is subjected to relative internal movement due to different fluid velocities. A region where these forces change behavior is known as a boundary layer, such as the bounding surface in the interior of a pipe.
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Churchill equation [24] (1977) is the only equation that can be evaluated for very slow flow (Reynolds number < 1), but the Cheng (2008), [25] and Bellos et al. (2018) [8] equations also return an approximately correct value for friction factor in the laminar flow region (Reynolds number < 2300). All of the others are for transitional and ...
A turbulent flow in a fluid is defined by the critical Reynolds number, for a closed pipe this works out to approximately R e c ≈ 2000. {\displaystyle \mathrm {Re} _{\text{c}}\approx 2000.} In terms of the critical Reynolds number, the critical velocity is represented as
From the chart, it is evident that the friction factor is never zero, even for smooth pipes because of some roughness at the microscopic level. The friction factor for laminar flow of Newtonian fluids in round tubes is often taken to be: [4] = [5] [2] where Re is the Reynolds number of the flow.
For spheres in uniform flow in the Reynolds number range of 8×10 2 < Re < 2×10 5 there co-exist two values of the Strouhal number. The lower frequency is attributed to the large-scale instability of the wake, is independent of the Reynolds number Re and is approximately equal to 0.2. The higher-frequency Strouhal number is caused by small ...