When.com Web Search

  1. Ads

    related to: linear transformation examples pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    In linear algebra, linear transformations can be represented by matrices.If is a linear transformation mapping to and is a column vector with entries, then there exists an matrix , called the transformation matrix of , [1] such that: = Note that has rows and columns, whereas the transformation is from to .

  3. Linear map - Wikipedia

    en.wikipedia.org/wiki/Linear_map

    A specific application of linear maps is for geometric transformations, such as those performed in computer graphics, where the translation, rotation and scaling of 2D or 3D objects is performed by the use of a transformation matrix. Linear mappings also are used as a mechanism for describing change: for example in calculus correspond to ...

  4. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    A geometric rotation transforms lines to lines, and preserves ratios of distances between points. From these properties it can be shown that a rotation is a linear transformation of the vectors, and thus can be written in matrix form, Qp. The fact that a rotation preserves, not just ratios, but distances themselves, is stated as

  5. Orthogonal transformation - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_transformation

    Transformations with reflection are represented by matrices with a determinant of −1. This allows the concept of rotation and reflection to be generalized to higher dimensions. In finite-dimensional spaces, the matrix representation (with respect to an orthonormal basis ) of an orthogonal transformation is an orthogonal matrix .

  6. Outline of linear algebra - Wikipedia

    en.wikipedia.org/wiki/Outline_of_linear_algebra

    Examples of vector spaces; Linear map. Shear mapping or Galilean transformation; Squeeze mapping or Lorentz transformation; Linear subspace. Row and column spaces; Column space; Row space; Cyclic subspace; Null space, nullity; Rank–nullity theorem; Nullity theorem; Dual space. Linear function; Linear functional; Category of vector spaces

  7. Invariant subspace - Wikipedia

    en.wikipedia.org/wiki/Invariant_subspace

    As the above examples indicate, the invariant subspaces of a given linear transformation T shed light on the structure of T. When V is a finite-dimensional vector space over an algebraically closed field , linear transformations acting on V are characterized (up to similarity) by the Jordan canonical form , which decomposes V into invariant ...

  8. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Essentially, the matrices A and Λ represent the same linear transformation expressed in two different bases. The eigenvectors are used as the basis when representing the linear transformation as Λ. Conversely, suppose a matrix A is diagonalizable. Let P be a non-singular square matrix such that P −1 AP is some diagonal matrix D.

  9. Bounded operator - Wikipedia

    en.wikipedia.org/wiki/Bounded_operator

    A linear operator : between two topological vector spaces (TVSs) is called a bounded linear operator or just bounded if whenever is bounded in then () is bounded in . A subset of a TVS is called bounded (or more precisely, von Neumann bounded ) if every neighborhood of the origin absorbs it.