Search results
Results From The WOW.Com Content Network
A function f is concave over a convex set if and only if the function −f is a convex function over the set. The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield.
A graph of the bivariate convex function x 2 + xy + y 2. Convex vs. Not convex. In mathematics, a real-valued function is called convex if the line segment between any two distinct points on the graph of the function lies above or on the graph between the two points. Equivalently, a function is convex if its epigraph (the set of points on or ...
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
For every proper convex function : [,], there exist some and such that ()for every .. The sum of two proper convex functions is convex, but not necessarily proper. [4] For instance if the sets and are non-empty convex sets in the vector space, then the characteristic functions and are proper convex functions, but if = then + is identically equal to +.
By the Jordan curve theorem, a simple closed curve divides the plane into interior and exterior regions, and another equivalent definition of a closed convex curve is that it is a simple closed curve whose union with its interior is a convex set. [9] [17] Examples of open and unbounded convex curves include the graphs of convex functions. Again ...
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
Equivalently, a convex set or a convex region is a set that intersects every line in a line segment, single point, or the empty set. [1] [2] For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex. The boundary of a convex set in the plane is always a convex curve.
Convex analysis includes not only the study of convex subsets of Euclidean spaces but also the study of convex functions on abstract spaces. Convex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets, often with applications in convex minimization, a subdomain of optimization theory.