When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Calvin cycle - Wikipedia

    en.wikipedia.org/wiki/Calvin_cycle

    To create 1 surplus G3P requires 3 carbons, and therefore 3 turns of the Calvin cycle. To make one glucose molecule (which can be created from 2 G3P molecules) would require 6 turns of the Calvin cycle. Surplus G3P can also be used to form other carbohydrates such as starch, sucrose, and cellulose, depending on what the plant needs. [10]

  3. Photosynthesis - Wikipedia

    en.wikipedia.org/wiki/Photosynthesis

    This process, called photorespiration, uses energy, but does not produce sugars. RuBisCO oxygenase activity is disadvantageous to plants for several reasons: One product of oxygenase activity is phosphoglycolate (2 carbon) instead of 3-phosphoglycerate (3 carbon). Phosphoglycolate cannot be metabolized by the Calvin-Benson cycle and represents ...

  4. Carbohydrate metabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_metabolism

    Glucose-6-phosphate can then progress through glycolysis. [1] Glycolysis only requires the input of one molecule of ATP when the glucose originates in glycogen. [1] Alternatively, glucose-6-phosphate can be converted back into glucose in the liver and the kidneys, allowing it to raise blood glucose levels if necessary. [2]

  5. Photosynthetic efficiency - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_efficiency

    28.2% (sunlight energy collected by chlorophyll) → 68% is lost in conversion of ATP and NADPH to d-glucose, leaving; 9% (collected as sugar) → 35–40% of sugar is recycled/consumed by the leaf in dark and photo-respiration, leaving; 5.4% net leaf efficiency. Many plants lose much of the remaining energy on growing roots.

  6. Autotroph - Wikipedia

    en.wikipedia.org/wiki/Autotroph

    These plant sugars are polymerized for storage as long-chain carbohydrates, such as starch and cellulose; glucose is also used to make fats and proteins. When autotrophs are eaten by heterotrophs, i.e., consumers such as animals, the carbohydrates, fats, and proteins contained in them become energy sources for the heterotrophs. [12]

  7. Photorespiration - Wikipedia

    en.wikipedia.org/wiki/Photorespiration

    C 2 photosynthesis (also called glycine shuttle and photorespiratory CO 2 pump) is a CCM that works by making use of – as opposed to avoiding – photorespiration. It performs carbon refixation by delaying the breakdown of photorespired glycine, so that the molecule is shuttled from the mesophyll into the bundle sheath .

  8. C4 carbon fixation - Wikipedia

    en.wikipedia.org/wiki/C4_carbon_fixation

    1. CO 2 is fixed to produce a four-carbon molecule (malate or aspartate). 2. The molecule exits the cell and enters the bundle sheath cells. 3. It is then broken down into CO 2 and pyruvate. CO 2 enters the Calvin cycle to produce carbohydrates. 4. Pyruvate reenters the mesophyll cell, where it is reused to produce malate or aspartate.

  9. C3 carbon fixation - Wikipedia

    en.wikipedia.org/wiki/C3_carbon_fixation

    Calvin–Benson cycle. C 3 carbon fixation is the most common of three metabolic pathways for carbon fixation in photosynthesis, the other two being C 4 and CAM.This process converts carbon dioxide and ribulose bisphosphate (RuBP, a 5-carbon sugar) into two molecules of 3-phosphoglycerate through the following reaction: