When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Timekeeping on Mars - Wikipedia

    en.wikipedia.org/wiki/Timekeeping_on_Mars

    The Mars time of noon is 12:00 which is in Earth time 12 hours and 20 minutes after midnight. For the Mars Pathfinder, Mars Exploration Rover (MER), Phoenix, and Mars Science Laboratory missions, the operations teams have worked on "Mars time", with a work schedule synchronized to the local time at the landing site on Mars, rather than the ...

  3. Equation of time - Wikipedia

    en.wikipedia.org/wiki/Equation_of_time

    The equation of time vanishes only for a planet with zero axial tilt and zero orbital eccentricity. [5] Two examples of planets with large equations of time are Mars and Uranus. On Mars the difference between sundial time and clock time can be as much as 50 minutes, due to the considerably greater eccentricity of its orbit.

  4. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    Orbit insertion. v. t. e. The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets, exoplanets orbiting other stars, or binary stars.

  5. Orbit of Mars - Wikipedia

    en.wikipedia.org/wiki/Orbit_of_Mars

    Mars has an orbit with a semimajor axis of 1.524 astronomical units (228 million km) (12.673 light minutes), and an eccentricity of 0.0934. [1][2] The planet orbits the Sun in 687 days [3] and travels 9.55 AU in doing so, [4] making the average orbital speed 24 km/s. The eccentricity is greater than that of every other planet except Mercury ...

  6. Drake equation - Wikipedia

    en.wikipedia.org/wiki/Drake_equation

    The Drake equation is: [ 1 ] where. N = the number of civilizations in the Milky Way galaxy with which communication might be possible (i.e. which are on the current past light cone); and. R∗ = the average rate of star formation in our Galaxy. fp = the fraction of those stars that have planets.

  7. Hohmann transfer orbit - Wikipedia

    en.wikipedia.org/wiki/Hohmann_transfer_orbit

    In astronautics, the Hohmann transfer orbit (/ ˈhoʊmən /) is an orbital maneuver used to transfer a spacecraft between two orbits of different altitudes around a central body. For example, a Hohmann transfer could be used to raise a satellite's orbit from low Earth orbit to geostationary orbit. In the idealized case, the initial and target ...

  8. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    t. e. Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets, satellites, and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation.

  9. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    Kepler's laws of planetary motion. Illustration of Kepler's laws with two planetary orbits. The orbits are ellipses, with foci F1 and F2 for Planet 1, and F1 and F3 for Planet 2. The Sun is at F1. The shaded areas A1 and A2 are equal, and are swept out in equal times by Planet 1's orbit. The ratio of Planet 1's orbit time to Planet 2's is.